

- •Polynomial evaluation by finite differences
- •automatic tables
- •engrave plates
- •powered by a steam engine
- •15 digit numbers
- •he never completed it

Babbage's Difference Engine

First Generation - Vacuum tubes

1 ENIAC

- 1. Electronic Numerical Integrator And Computer
- 2. Eckert and Mauchy of University of Pennsylvania
- 3. Trajectory tables for weapons
- 4. Started 1943 and Finished 1946
- 5. Too late for war effort Used until 1955

ENIAC features

- 1. Decimal (not binary)
- 2. 20 accumulators of 10 digits
- 3. Programmed manually by switches
- 4. 18,000 vacuum tubes
- 5. 30 tons
- 6. 15,000 square feet
- 7. 140 kW power consumption
- 8. 5,000 additions per second

Commercial Computers

- 1947 Eckert-Mauchly Computer Corporation
 UNIVAC I (Universal Automatic Computer)
 - US Bureau of Census 1950 calculations

• IBM

- Punched-card processing equipment
- 701 is IBM's first stored program computer (1953)
- Scientific calculations

IBM 7000 series

The 7090 is a transistorized version of the IBM 709 which was a very popular high end <u>computer</u> in the early 1960s. The 7090 had 32Kbytes of 36-bit core <u>memory</u> and a <u>hardware</u> floating point unit. **Fortran** was its most popular language, but it supported many others.

Property	Model 30	Model 40	Model 50	Model 65
Property Relative performance	Model 30	Model 40 3.5	Model 50	Model 65
Relative performance		Model 40 3.5 625		
	1	3.5	10	21
Relative performance Cycle time (nsec)	1 1000	3.5 625	10 500	21 250

MITS Altair 8800

The Altair 8800, from Micro Instrumentation Telemetry Systems (MITS) is considered by many to be the first <u>mass produced</u> personal computer, although they were called micro-computers in those days.

Μ	ITS Altair 8800	
Announced:	March 1975	
Price: US \$3	95 as a kit	
US \$4	95 assembled	
CPU: Intel 80	080, 2.0 MHz	
RAM: 256 by	rtes, 64K max	
Display:	front panel LEDs	
Controls:	front panel switches	
Expansion:	card-cage with 16 card	l slots
Storage:	external Cassette or	8" floppy drive
OS: CP/M,	BASIC	

4004

In 1971, Busicom, a Japanese company, wanted a chip for a new calculator. With incredible o verkill, Intel built the world's first general-purpose microprocessor. Then it bought back the rights for \$60,000.

The <u>4-bit 4004</u> ran at 108 kHz and contained 2300 transistors

- 16 bit
- 20 bit address bus
- Intel 8088
 - 16 bit but external data bus 8 bit
- · IBM PC
 - 8088 up
 - 16 K memory
 - 5 expansion slots for I/O cards

Chip	Date	MHz	Transistors	Memory	Notes
4004	4/1971	0.108	2,300	640	First microprocessor on a chip
8008	4/1972	0.108	3,500	16 KB	First 8-bit microprocessor
8080	4/1974	2	6,000	64 KB	First general-purpose CPU on a chip
8086	6/1978	5-10	29,000	1 MB	First 16-bit CPU on a chip
8088	6/1979	5-8	29,000	1 MB	Used in IBM PC
80286	2/1982	8-12	134,000	16 MB	Memory protection present
80386	10/1985	16-33	275,000	4 GB	First 32-bit CPU
80486	4/1989	25-100	1.2M	4 GB	Built-in 8K cache memory
Pentium	3/1993	60-233	3.1M	4 GB	Two pipelines; later models had MM
Pentium Pro	3/1995	150-200	5.5M	4 GB	Two levels of cache built in
Pentium II	5/1997	233-400	7.5M	4 GB	Pentium Pro plus MMX

Moore's Law

Formulated by <u>GordonMoore</u> of <u>IntelCorporation</u>, it says (roughly) that chip density doubles every eighteen months. This means that memory sizes, processor power, etc. all follow the same curve.

"the doubling of transistors every couple of years, has been maintained, and still holds true today"

Yea	r of Introduction	Transistors
4004	1971	2,250
8008	1972	2,500
8080	1974	5,000
8086	1978	29,000
286	1982	120,000
Intel386™ processor	1985	275,000
Intel486™ processor	1989	1,180,000
Intel® Pentium® processor	1993	3,100,000
Intel® Pentium® II processor	1997	7,500,000
Intel® Pentium® III processo	r 1999	24,000,000
Intel® Pentium® 4 processor	2000	42,000,000
Intel® Itanium® processor	2002	220,000,000
Intel® Itanium® 2 processor	2003	410,000,000

